Approximate Capacity of Fast Fading Interference Channels with no CSIT Shorter versions of this work appeared in Joysonfading,JoysonAFisit with outline of proofs. This version has complete proofs. This work was supported in part by NSF grants 1514531 and 1314937
نویسندگان
چکیده
We develop a characterization of fading models, which assigns a number called logarithmic Jensen’s gap to a given fading model. We show that as a consequence of a finite logarithmic Jensen’s gap, approximate capacity region can be obtained for fast fading interference channels (FF-IC) for several scenarios. We illustrate three instances where a constant capacity gap can be obtained as a function of the logarithmic Jensen’s gap. Firstly for an FF-IC with neither feedback nor channel state information at transmitter (CSIT), if the fading distribution has finite logarithmic Jensen’s gap, we show that a rate-splitting scheme based on average interference-to-noise ratio (inr) can achieve its approximate capacity. Secondly we show that a similar scheme can achieve the approximate capacity of FF-IC with feedback and delayed CSIT, if the fading distribution has finite logarithmic Jensen’s gap. Thirdly, when this condition holds, we show that point-to-point codes can achieve approximate capacity for a class of FF-IC with feedback. We prove that the logarithmic Jensen’s gap is finite for common fading models, including Rayleigh and Nakagami fading, thereby obtaining the approximate capacity region of FF-IC with these fading models.
منابع مشابه
On Stochastic Orders and Fast Fading Multiuser Channels with Statistical CSIT
In this paper, we investigate the ergodic capacity of fast fading Gaussian multiuser channels when only the statistics of the channel state are known at the transmitter. In general, the characterization of capacity regions of multiuser channels with only statistical channel state information at the transmitter (CSIT) is open. Instead of directly matching achievable rate regions and the correspo...
متن کاملMultiuser Channels with Statistical CSI at the Transmitter: Fading Channel Alignments and Stochastic Orders, an Overview
In this overview paper, we introduce an application of stochastic orders in wireless communications. In particular, we show how to use stochastic orders to investigate the ergodic capacity results for fast fading Gaussian memoryless multiuser channels when only the statistics of the channel state information are known at the transmitters (CSIT). In general, the characterization of the capacity ...
متن کاملEnergy Detection of Unknown Signals over Composite multipath/shadowing Fading Channels
In this paper, the performance analysis of an energy detector is exploited over composite multipath/shadowing fading channels, which is modeled by Rayleigh-lognormal (RL) distribution. Based on an approximate channel model which was recently proposed by the author, the RL envelope probability density function (pdf) is approximated by a finite sum of weighted Rayleigh pdfs. Relying on this inter...
متن کاملOn Capacity of Non-Coherent Diamond NetworksThis work was supported in part by NSF grants 1514531 and 1314937
There is a vast body of work on the capacity bounds for a "coherent" wireless network, where the network channel gains are known, at least at the destination. However, there has been much less attention to the case where the network parameters (channel gains) are unknown to everyone, i.e., the non-coherent wireless network capacity. In this paper, we study the generalized degrees of freedom (gD...
متن کاملApproximate Dynamic Analysis of Structures for Earthquake Loading Using FWT
Approximate dynamic analysis of structures is achieved by fast wavelet transform (FWT). The loads are considered as time history earthquake loads. To reduce the computational work, FWT is used by which the number of points in the earthquake record are reduced. For this purpose, the theory of wavelets together with filter banks are used. The low and high pass filters are used for the decompositi...
متن کامل